In the early days of DCC, power was fed from one source (the "booster") to the whole railway. That was simple, and allowed a lot of wiring to be removed.

Quite quickly however at least three problems were found with this arrangement:

DCC has always allowed several boosters to be used. Separate regions known as "Districts" are electrically isolated by gapping both rails; then a separate booster feeds each District. This allows the total power problem to be resolved: if the separate districts each have several moving trains, the railway as a whole can have more trains operating than if a single booster were used.

Using a separate booster to feed the accessory decoders also became a recognised thing to do. This allows power to the accessory decoders to be always there, even if there are track shorts. However this is an expensive solution; modern accessory decoders (e.g. DAC20, DS64) provide alternative solutions to solve this.

Even if several boosters are used, it is likely that a track power short will affect quite a large area simply because boosters are relatively expensive and likely to cover bid sections of railway. What was needed was the electronic equivalent of a "circuit breaker": enter the Power Manager.

Power Managers act as self resetting electronic fuses. If there is a short, they remove track power; when the short is removed, they re-connect the power. The difference between a power manager and a booster is that the power manager itself doesn't generate the DCC rail signal; you still need a booster for that. The critical advantage over a booster is that they are about a tenth of the price, so you can aspire to have more of them. The output of a power manager feeds a "zone".

The Digitrax PM42 is a quad power manager. Each section behaves independently; that provides up to 4 separate power feeds. Each feed will be isolated from the others, so a short in one section will not affect the others.